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The proposed model in our previous study I improves the mathematical approximation defect and gives a new 
expression for the configurational energy of mixing using the fractional form rather than the algebraic form with 
second-order approximation for the configurational energy of non-random mixing 2. In this study, we introduce 
new universal constants to take into account the chain length dependence of a polymer in a solvent. Our proposed 
model shows a slight discrepancy when compared with experimental data and gives a better understanding of 
phase equilibria dependence on the chain length of the polymer. © 1997 Elsevier Science Ltd. All rights reserved. 
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INTRODUCTION 

The lattice model is a starting point for the prediction of 
liquid-liquid equilibria in polymer solutions. However, a 
variety of polymer-solution theories have been developed 
during the last half-century. Molecular-based thermo- 
dynamic models for describing liquid-liquid equilibria in 
polymer mixtures can be divided into four categories, each 
corresponding to a particular statistical mechanical frame- 
work: incompressible-lattice models, generalized van der 
Waals partition-function theories, compressible-lattice 
models 3-6, and off-lattice (continuous-space) models of 
chain fluids. 

The most widely used and best known of the incompres- 
sible-lattice models is the Flory-Huggins theory 7-11 which 
illustrates in a simple way the competition between the 
entropy of mixing and the attractive forces that produces 
liquid-liquid phase separation at low temperatures with an 
upper critical solution temperature. Many theoretical 
improvements, including Guggenheim's quasi-chemical 
model ~2, have been made by various workers, include 
chain connectivity and non-random mixing 12. In addition, 
the Flory-Huggins model and the quasi-chemical model 
give too narrow or parabolic liquid-liquid coexistence 
curves near the critical region when compared with 
experimental data in which the interaction parameter is 
assumed to be only inversely proportional to temperature. It 
ignores its composition dependence. Extensive experimen- 
tal results by many researchers clearly show, however, that 
the interaction parameter is a function of both polymer 
concentration and temperature for most polymer-containing 
systems and its temperature dependence is not a simple 
proportionality to the inverse temperature. 

Furthermore, to pursue a formal 'exact' solution to the 
lattice model using advanced statistical-mechanical 
methods 13-2°, Freed and co-workers developed a lattice 
field theory (or lattice cluster theory) 13-z° for polymer/ 
solvent systems which is formally an exact mathematical 
solution of the Flory-Huggins model. In this theory, they 
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have developed the first completely exact and systematic 
analysis of the macromolecular lattice models. Instead of 
the usual approximate counting of microstates, Freed's 
technique begins with a rigorous formulation of the partition 
function of the lattice and expands the Helmholtz free 
energy as a series of integrals. The terms can then be 
grouped to provide an expansion in the reciprocal of the 
lattice coordination number z. The effects of nearest- 
neighbour interactions are evaluated via a perturbation 
expansion in the interaction energies whose individual 
coefficients are represented in similar fashion and further 
expanded in the power of z -1. The technical complexity of 
the calculation dictates that only a few lower-order terms in 
this secondary expansion can be evaluated. The terms that 
are zeroth order in z -l correspond to the limit of infinite 
coordination number. For practical reasons, the infinite 
series with respect to coordination number, temperature, 
and composition in this theory are truncated at a certain 
order. Therefore, this theory still remains deficient for the 
correlation of liquid-liquid equilibria. 

Recently, Lambert et  al .  21 reported a new expression for 
Ami×A for incompressible monomer/r-mer mixtures obtained 
by correlating the Monte-Carlo simulation results. In their 
study, they used the algebraic form, which is a Redlich- 

2 Kister expansion truncated after the third term, to correlate 
energy of mixing data with Monte-Carlo simulation results. 
They introduce chain length dependent parameters using the 
simulation results. 

Bae 22 reported a modified version of the extended Flory- 
Huggins equation being applicable to represent the chain 
length dependence of liquid-liquid equilibria for some 
binary polymer solutions by adding the chain length 
dependence term in the interaction parameter. These 
improvements provide better agreement with experimental 
data by widening the liquid-liquid coexistence curve. The 
purpose of this study is to improve the discrepancy in 
predicting the phase equilibria behaviour of binary polymer 
solutions by taking the chain length dependence of the 
polymer into account for our previously proposed model i in 
which only universal parameters are used. The coexistence 
curves generated by the previous model and the model 
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adding the chain length dependence term are compared with 
experimental data. 

MODEL DEVELOPMENT 

Internal and Helmholtz energies of mixing 

The description of the lattice model starts with a simple 
cubic lattice (coordination number, z = 6) containing N, 
sites. The lattice is filled completely by N1 molecules of type 
1, which occupy only one lattice site (r, = l), and NZ 
molecules of ty$e 2, which occupy r2 nearest-neighbour 
lattice sites (r-mer). The energy of mixing is related to the 
number of nearest-neighbour pairs*’ by 

AmixU lN12 
N,s 2 N, 

(1) 

where N12 related to the total number of contacts of com- 
ponent i (zqiNj) is the total number of 1-2 pairs and F is the 
interchange energy as defined by 

&=&[I +&22-2&i* (2) 

where ciJ is the i-j nearest-neighbour interaction energy. The 
Helmholtz energy of mixing (A,ixA) is obtained by inte- 
grating the Gibbs-Helmholtz equation using Guggenheim’s 
athermal entropy of mixing as the boundary condition: 

$$= ($&+ J;T($) (3) 

1 
(4) 

A dimensionless temperature is defined by F = kTI&, where 
T is the absolute temperature and k is Boltzmann’s constant. 
rl, 4;, and 0, are the number of segments per molecule, 
volume fraction, and surface fraction of component i, 
respectively. I$;, and 19~ are defined by: 

4; = 
Nir; 

Nlrl f&r2 
(5) 

ej = N;qi 
Nlql +Nm 

(6) 

where q1 is the surface area parameter; 

zq; = r;(z - 2) + 2 (7) 

Correlation of simulation data 

The fractional form to improve the mathematical 
approximation and to correlate energy of mixing data to 
that of the Monte-Carlo simulation*’ is given by 

z!h&L4,42 B’ 

1 -A’(42 - 41) 1 (8) r 
where 

A’=aO+al [exp(l/?) - 11 (9) 

B’=bO+b, [exp(l/p) - 11 (10) 

where 4, and 4* are monomer and r-mer volume fractions, 
respectively. Parameters A’ and B’ depend on dimensionless 
temperature only. 

a0 a2 a4 a6 as 1.0 

Ltkne-cmp”‘z$ 

Figure 1 Plots of normalized energy of mixing for monomer ( I )/20-mer 
(2) mixtures as a function of $?. Open circles, solid circles, open sqyares, 
and solid squares are Monte-Carlo simulation results (Lambert et al. ) for 
kT/.s values of 3, 6. IO, and 30, respectively. Solid lines are calculated by 
equation (8) 

1 ’ I ’ I ’ I ’ 
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Figure 2 Plots of A’ and B’ as a function of a reciprocal of dimensionless 
temperature. The upper solid line is calculated by equation (I 0). The lower 
solid line is calculated by equation (9). Open circles are calculated values 
by correlating with Monte-Carlo simulation results from Lambert et al.” 

Universal constants 

Lambert et a1.2’ reported that the parameters are very 
weak functions of rZ when r2 is larger than 10. In our 
previous study, we used the same assumption as Lambert et 
al. Those constants are not adjustable parameters and are 
determined by comparing with Monte-Carlo simulation 
results. 

Figure 1 shows the energy of mixing for monomed20- 
mer (r2 = 20) mixtures as a function of r-mer volume 
fraction for various dimensionless temperatures. The solid 
lines are the fit given by equation (8) with best fitting values 
of ao, a 1, bo, and b 1. 
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Figure 2 shows A' and B' as a function of reciprocal of 
dimensionless temperature. The solid lines are given by 
equations (9) and (10). Our best values obtained for a0, a 1, 
b0, and bl are 0.1057, 0.0614, 4.6846, and -1 .3970,  
respectively. 

Chain length dependence term 
In our proposed model, parameters a0, al, b0, and bl 

depend on r-mer chain length. Figure 3 represents the chain 
length dependence of a0, al,  bo, and b~. The parameters 
appear to be asymptotic values with respect to r2. The 
following equations represent the r-mer dependence of a0, 
ax, b0, and bl: 

0.22999(r 2 -- 1) 
a o = 0.00012 + (11) 

1 + 1.37129(r2 -- 1) 

0 .02160(r2-  1) 
al = - 0 . 0 1 7 1 7 +  (12) 

1 + 0.09642(r2 - 1) 

1.45604(r2 - 1) 
bo = 5.79880 - (13) 

1 + 1.83417(r2 - 1) 

0 .16059(r2-  1) 
bl = - 1 .42112-  (14) 

1 - 1.34296(r2 - 1) 

equations (11)-(14) can be applied to r2 >> 1000. After r2 > 
3, a0, al,  b0, and h I are not dependent on r2 according to 
Figure 3. 

A simple lattice model expression for predicting l iquid- 
liquid equilibria is given by 

AmixA-- (AmixA'~ + 2--~1'2 B In 
NrkT \ NrkTJ 1/~-=o a1(2'2 - 1) 

x 1 -  1 - - - - - ~ : - - 1 ) l e x p t ~ H ) - l }  (15) 
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Figure 3 
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Dependence  o f  parameters  ao, a=, bo, and b l  on r - m c r  cha in  
length. The squares, diamonds, circles, and triangles calculated by 
equations (9) and (10) from the simulation results represent bo, ao, a~, 
and bl, respectively. Solid lines are calculated by equations (11)-(14) 

(albo - aob,)(2*2 - 1) + bl 
A =  

1 + (al - ao)(2 '2 - 1) 

bo - bl 
B =  

1 + (al - ao)(2,2 - 1) 

and the critical condition is given by 

" 2( mixa'  

T,V 

\ rkT I 

T,V 

(16) 

= 0  (17) 

The critical temperature and critical volume fraction can 
be obtained by solving the following two equations 
simultaneously: 

- 1  ( r , )  Z [  ( * 2 - 0 2 "  / 
17~a 2 +- 1 -  g + --~ ql k, ~--~2~1 j 

( ) (  r1'2"/ rl (*1 - 01)_] 0102 - -  1 ql +q2 +q2 - - - -  

+ ' 2 ' t  r2*lJ r2* 2 

+ 2rl*2Y2rl*2(2*2--1) ~ 2  

(o% 
- rl a ,2 )  = 0  (18) 

(1 -- 02) 2 

z r  { ( ' 2 ' 1 - 0 2 0 1 ) -  ( 0 2 - 0 2 ) ( 1 -  2*2)} 
+ [q' ( ,2 , , )2  

+ 0102(01 (-~22~-~ ~ - - 0 2  - 1 + 202)(ql  + q2 r'*2~r-7~ J 

+ (  0102~- 1) ( rlq2"~k, r2.2) + q2rl(*2*l+O20'--2*20'-)l--r2 k, -~2~2- 

( OY) (02Y'~ 
+ 2r'Y+ 2r ' (5*2-1)  ~2 +r l*2 (7*2 - -4 )~kO~~)  

(0% 
- rl (0 2 -.32) \ 0 . ~ )  = 0  (19) 

where 

1 A 
1 B ~  a l ( 2 * 2 -  Y = 1)ln 

(2o) ,,}l × 1 
v 1 - a0tzo2 - ~) 

The coexistence curve is found from the following 
conditions: 

Atx' 1 = A # "  l (21) 

A~' 2 = A~" 2 (22) 

where A#i is the change in chemical potential upon 
isothermally transferring component i from the pure 
state to the mixture. Superscripts ' and " denote two 
phases at equilibrium. Relative to pure component 1, the 
chemical potential A>I of component 1 in the solution is 
defined by 
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= (OAmixA"~ 

a~l \ aN1 J T,N: 

= l n ( l - 0 2 ) + O z ( 1 - ~ ) + 2 [ q , l n ~ + q , ( 0 2 - O 2 )  

+ q2r201(~l -Ol)] + r10~Y + r,O~O, ~ 

(23) 

and a similar relation holds for 2~t~2 

( 0AmixA~ 
A~z = \ aN2 Jr, N, 

=ln02-1-(l--O2)(1--~)+2[q21n~-I-q2(Ol--02) 

r201 (02 -- 02)1 + r201Y -1- r20102 
+q]  r]02 

(24) 

RESULTS AND DISCUSSION 

It is essential to fix model parameters r2 and e/k in order to 
compare calculated results with experimental liquid-liquid 
equilibria data 6'24'25. In this study, to get agreement with the 
experimental results, r2 and e/k are adjusted for all cases 
from equations (18) and (19), simultaneously. The energy 
parameter, e/k, has almost no effect on the shape of the 
coexistence curve. Therefore, r 2 is the most important 
parameter to determine the shape of the calculated 
coexistence curve. According to Figure 3, when r2 is 
larger than 3, parameters a0, a l, b0, and b l show very small 
changes. However, these small changes have a very large 
effect on the shape of the coexistence curve. 

Figure 4 shows phase diagrams of poly(isobutylene) 
(PIB)/diisobutyl ketone systems 7-9. Thick solid lines 
present coexistence curves generated by the model with 
the chain length dependence term (Case I). Thin solid lines 
present coexistence curves generated by the model without 
the chain length dependence term (Case II). As shown in 
Figure 4, calculated curves from Case I agree very well with 
experimental data, while Case II predicts narrow coexist- 
ence curves. Values of e/k depend weakly on the chain 
length of the polymer, e/k values of Case lI for PIB of 
molecular weight 6 000 000, 285 000, and 22 700 are 68.91, 
68.61, 68.59 K, respectively. For Case I, those values are 
81.27, 79.99, and 76.66 K, respectively. Our results show 
that e/k values of Case I are larger than those of Case II. 

The model presented here has considered only liquid- 
liquid equilibria with an upper critical solution temperature, 
since it has not considered the oriented intermolecular 
forces 25'27'28 and free volume effects 3-6 which are essential 
for explaining the lower critical solution temperatures 29. 
There is a slight discrepancy between calculated results 
using Case II and experimental data in the high polymer 
concentration range. Otherwise, Case I1 gives a reasonable 
prediction of critical points. For the high-molecular-weight 
polymer there is greater deviation between the theoretical 
prediction and experimental results than for the low- 
molecular-weight polymer. This is because Case II uses 
the simulation data for the energy of mixing for monomer/ 
20-mer (r  2 : 20) mixtures only. But Case I agrees very well 
with all the molecular weights of PIB. 

~ l  ' I ' I I I ] 

~m:6,oo~ooo 
~ r2=19,5~ 

~ 2~ ,000  

~ 310. 

3(10. 

~ 2 Z m 0  
r2=51~ 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 
Vdurne fraction I~yrmr 

Figure 4 Coexistence curves for PIB/diisobutyl ketone systems. Open 
diamonds, open squares, and open circles are experimental data (Flory and 
Shultz 26) for PIB of molecular weight 6000000, 285000 and 22700, 
respectively. Thick solid lines calculated by equations (17) and (18) (Case 
I). Thin solid lines are calculated using Case II 

275 

270" ~ 7 6 7  • 1~,=233,000 
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245- 
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Figure 5 Coexistence curves for PS/tert-butyl acetate s~stems. ()pen 
diamonds and circles are experimental data (Bae et al: °) for PS of 
molecular weight 233000 and 100000. respectively. Thick solid lines 
calculated by Case 11. Thin solid lines are calculated by Case 1 

Figure 5 shows phase diagrams of polystyrene (PS)/tert- 
butyl acetate systems 22'3°'31 e/k values of Case II for PS of 
molecular weight 233000 and t00000 are 62.04 and 
62.68 K, respectively. Those of Case I are 70.15 and 
68.68 K, respectively. Similarly, Case I gives a better 
prediction than that of Case II. 

Figure 6 shows a phase diagram of the PS/cyclohexane 
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Figure 6 Coexistence curves for the PS/cyclohexane system. Open 
squares and circles are experimental data (Patterson and Delmas 32) for PS 
of molecular weight 610 000. The solid line is calculated by equations (17) 
and (18) (Case I). The dotted line is calculated using Case II 

system. The e/k value of Case II for PS of molecular weight 
610000 is 63.75 K. That of Case I is 74.19 K. The system is 
well known for having the specific interaction; however, 
Case I still gives very good agreement with experimental 
data. 

In our proposed model (Case I), various flexibilities of 
chain molecules are not included. The model implicitly 
assumes that PIB (Figure 4) has the same flexibility as that 
of PS (Figures 5 and 6). Further, solvent molecules 
(diisobutyl ketone in Figure 4, cyclohexane in Figure 6, 
and tert-butyl acetate in Figure 5) are considered to be 
monomers where the concept of flexibility does not apply. It 
is likely that this deficiency is basically responsible for the 
discrepancy between our proposed model (Case I) and the 
experimental results. 

CONCLUSIONS 

The simplified and improved expression of AmixU is 
proposed for the Helmholtz energy of mixing for mono- 
mer/r-mer mixtures obtained by correlating Monte-Carlo 
simulation results. For some binary systems, our correlating 
equation successfully predicts liquid-liquid equilibria for 
various molecular weights of polymers which takes into 
account the chain length dependence term. Our proposed 

model (Case I) agrees remarkably well with experimental 
results. 
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